Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. Soc. Bras. Med. Trop ; 53: e20200467, 2020. tab, graf
Article in English | SES-SP, ColecionaSUS, LILACS | ID: biblio-1143874

ABSTRACT

Abstract INTRODUCTION: Semi-synthetic dillapiole compounds derived from Piper aduncum essential oil are used as alternative insecticides to control insecticide-resistant Aedes aegypti. Thus, we aimed to evaluate the genotoxic effects of semi-synthetic isodillapiole on the nuclei of neuroblasts (larvae) and oocytes (females) and the mean oviposition rates of the females over four generations (G1, G2, G3, and G4) of Ae. aegypti. METHODS: Larvae were captured in the city of Manaus, Amazonas state, Brazil, and exposed to isodillapiole in bioassays (20, 40, and 60 µg/mL) and a negative control (0.05% DMSO in tap water) for 4 h. The cerebral ganglia were extracted from the larvae and oocytes from the adult females to prepare slides for cytogenetic analysis. Breeding pairs were established and eggs counts were quantified taken after the bioassays. RESULTS: The analysis of 20,000 interphase nuclei of neuroblasts and oocytes indicated significant genotoxicity (micronuclei, budding, polynucleated cells, and other malformations) compared to that of the control. Metaphasic and anaphasic nuclei presented chromosomal breaks; however, no significant variation and damage was observed in the negative control. A significant reduction in mean oviposition rates was also recorded following exposure to isodillapiole over the four generations (G1, G2, G3, and G4). CONCLUSIONS: The toxic and genotoxic effects of isodillapiole on Ae. aegypti were caused by reduced oviposition in the females and nuclear abnormalities over the four generations of the trials. Further studies are required, rather than our in vitro assays, to verify the efficacy of exposure to this compound for controlling Ae. aegypti.


Subject(s)
Animals , Female , Aedes , Insecticides/toxicity , Oviposition , DNA Damage , Brazil , Larva
2.
Genet. mol. biol ; 32(2): 394-398, 2009. graf, tab
Article in English | LILACS | ID: lil-513975

ABSTRACT

The micronucleus and nuclear abnormalities assays have been used increasingly to evaluate genotoxicity of many compounds in polluted aquatic ecossystems. The aim of this study is to verify the efficiency of the micronucleus assay and nuclear abnormality assay in field and laboratory work, when using erythrocytes of the tropical marine fish Bathygobius soporator as genotoxicity biomarkers. Gill peripheral blood samples were obtained from specimens of Bathygobius soporator. In order to investigate the frequencies of micronuclei and to assess the sensitivity of species, the results were compared with samples taken at the reference site and maintained in the laboratory, and fish treated with cyclophosphamide. The micronucleus assay was efficient in demonstrating field pollution and reproducing results in the labotatory. There were significant higher frequencies of micronuclei in two sites subject to discharge of urban and industrial effluents. The nuclear abnormality assay did not appear to be an efficient tool for genotoxicity evaluation when compared with field samples taken at a reference site in laboratory, with a positive control.

SELECTION OF CITATIONS
SEARCH DETAIL